Mapping tree species composition in a Caspian temperate mixed forest based on spectral-temporal metrics and machine learning
نویسندگان
چکیده
The tree species composition (TSC) reflects a forest's diversity and is relevant for forest planning, biodiversity conservation, resources management. Yet, accurate information on at landscape scale largely missing, especially mixed forests remote areas. One reason being that mapping time-consuming, costly, in Here we develop robust method TSC temperate forest. Based inventory plots considering the frequency of dominant dataset, five groups were defined: pure oriental beech, common hornbeam, deciduous. classification based three-year time series data Landsat-8 (L8) Sentinel-2 (S2) derived spectral-temporal features (STMs) vegetation indices within long-term, seasonal, monthly scales. Model performances three Machine Learning (ML) algorithms, Random Forest (RF), Support Vector (SVM), Classification Regression Tree (CART) compared revealed different accuracies (overall (OAs) between ∼ 70 % 86 %). Highest OA was obtained using SVM regardless dataset (STMs satellite series). comparisons scales indicated with both L8 S2 seasonal STMs produced higher than long-term outperforming across all tested ML algorithms. We conclude freely available series, features, algorithms are favourable mapping.
منابع مشابه
task-based language teaching in iran: a mixed study through constructing and validating a new questionnaire based on theoretical, sociocultural, and educational frameworks
جنبه های گوناگونی از زندگی در ایران را از جمله سبک زندگی، علم و امکانات فنی و تکنولوژیکی می توان کم یا بیش وارداتی در نظر گرفت. زبان انگلیسی و روش تدریس آن نیز از این قاعده مثتسنی نیست. با این حال گاهی سوال پیش می آید که آیا یک روش خاص با زیر ساخت های نظری، فرهنگی اجتماعی و آموزشی جامعه ایرانی سازگاری دارد یا خیر. این تحقیق بر اساس روش های ترکیبی انجام شده است.پرسش نامه ای نیز برای زبان آموزان ...
Object-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest
This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...
متن کاملPure stands of temperate forest tree species
Pure stands of temperate forest tree species modify soil respiration and N turnover N. Brüggemann, P. Rosenkranz, H. Papen, K. Pilegaard, and K. Butterbach-Bahl Forschungszentrum Karlsruhe, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany Risø National Laboratory, Plant Biology and Biogeochemistry Department, Roskilde,...
متن کاملobject-based classification of ultracamd imagery for identification of tree species in the mixed planted forest
this study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. to maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. two subsets of an ultracam d image were geometrically corrected using aero-triangulation method. some appropriate transformations were perfor...
متن کاملFine Root Productivity and Turnover of Ectomycorrhizal and Arbuscular Mycorrhizal Tree Species in a Temperate Broad-Leaved Mixed Forest
Advancing our understanding of tree fine root dynamics is of high importance for tree physiology and forest biogeochemistry. In temperate broad-leaved forests, ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) tree species often are coexisting. It is not known whether EM and AM trees differ systematically in fine root dynamics and belowground resource foraging strategies. We measured fine ro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International journal of applied earth observation and geoinformation
سال: 2023
ISSN: ['1872-826X', '1569-8432']
DOI: https://doi.org/10.1016/j.jag.2022.103154